
Continuation-Passing Style

Remember accumulator-passing style? Another strategy for
producing tail recursions is Continuation-passing style. The
continuation of an expression is what we do with the result of that
expression. For example, the continuation of the expression (+ 3 4)
in (* 2 (+ 3 4)) is that we multiply it by 2. We represent
continuations in Scheme as functions of 1 variable, where the
variable represents the result of the expression. The continuation of
(+ 3 4) in the expression (* 2 (+ 3 4)) is
(lambda (y) (* 2 y)).

In continuation-passing style, the recursive functions carry their
continuations around as an extra parameter. Here is an example that
sums the elements of a vector:

(define sum-k
(lambda (vec k)

(cond
[(null? vec) (k 0)]
[else (sum-k (cdr vec) (lambda (y) (k (+ y (car vec)))))])))

At the top level the continuation is (lambda (x) x). So
(sum-k '(1 2 3 4) (lambda (x) x)) is 10.

(define sum-k
(lambda (vec k)

(cond
[(null? vec) (k 0)]
[else (sum-k (cdr vec) (lambda (y) (k (+ y (car vec)))))])))

The interesting line is the else condition of the cond expression. We
do a tail-recursive call on the cdr of vec. That much isn't surprising.
The new continuation is lambda (y), where y represents the answer to
(sum-k (cdr vec)...) We take y and add (car vec) to it; this gets us the
sum of vec. We then apply k, the incoming continuation to this,
because k tells us what to do with the answer.

Note that the top-level continuation, which we give at the start of the
computation, is usually (lambda (x) x): This means "return the answer".

Here are rules for writing continuation-passing style functions:

• Continuations are represented by functions of one argument.
You can think of this argument as the result of the recursive call.

• At the top level the continuation is always the identity:
(lambda (y) y)

• Every recursive function gets an additional argument, k, which is
the continuation for a call to this function.

• The continuation parameter must be applied to any answer
produced by the function -- instead of returning x we return (k x)

• All recursive calls are tail-recursive. Context gained during
evaluation of the function is incorporated in the new
continuation passed in the recursive call.

Here is a reverse function done in continuation-passing style:

(define rev-k
(lambda (lat k)

(cond
[(null? lat) (k null)]
[else (rev-k (cdr lat) (lambda (y) (k (append y (list (car lat))))))])))

The continuation for the recursive call is (lambda (y)...) so y will be the
reversal of (cdr lat), append y onto the list whose only element is
(car lat) -- this gets us the reversal of lat -- and apply the incoming
continuation to this result.

One more example. The append function joins together two lists:
(append '(1 2 3) '(4 5 6)) is (1 2 3 4 5 6).

(define append-k (lambda (lat1 lat2 k)
(cond

[(null? lat1) (k lat2)]
[else (append-k (cdr lat1) lat2 (lambda (y) (k(cons (car lat1)y))))])))

The continuation for the recursive call says "Let y be the result of
appending (cdr lat1) onto lat2. cons (car lat1) onto y, and apply the
incoming continuation to the result."

Programming with explicit continuations gives you a lot of control.
Here is one example of this. Consider a simple recursive function that
sums the elements of a vector

(define sum
(lambda (vec)

(cond
[(null? vec) 0]
[else (+ (car vec) (sum (cdr vec)))])))

Suppose we want to modify this to return 'error if we get to an
element of vec that isn't a number.

The following doesn't work:

(define sum1
(lambda (vec)

(cond
[(null? vec) 0]
[(not (number? (car vec))) 'error]
[else (+ (car vec) (sum1 (cdr vec)))])))

If we call this with a bad "vector": (sum1 '(1 2 bob), then when we
recurse to (sum1 '(2 bob)) we want to add 2 to (sum1 '(bob)).
However, (sum1 '(bob)) is 'error, and we can't add 2 to 'error, so our
program crashes

However, since continuation-passing style uses tail-recursion, we can
pass the 'error symbol back to the top. The following does work:
(define sum-k

(lambda (vec k)
(cond

[(null? vec) (k 0)]
[(not (number? (car vec))) 'error]
[else (sum-k (cdr vec) (lambda (y) (k (+ y (car vec)))))])))

Now (sum-k '(1 2 3) (lambda (x) x)) is 6
(sum-k '(1 2 bob) (lambda (x) x)) is 'error

This is even better done by giving an explicit error continuation, which
tells us what to do with an error:
(define sum3

(letrec ([sum-k (lambda (vec k err)
(cond

[(null? vec) (k 0)]
[(not (number? (car vec))) (err (car vec))]
[else (sum-k (cdr vec)

(lambda (y) (k (+ y (car vec))))
err)]))])

(lambda (vec) (sum-k vec
(lambda (x) x)
(lambda (x) (list 'bad-element x))))))

Now (sum3 '(1 2 3)) is 6 and (sum3 '(1 2 bob)) is (bad-element bob).

